

Welcome to gamification-engine’s documentation!

gamification-engine is a flexible open source gamification solution that allows you to easily integrate gamification features into your own products.

Contents:

	Installation
	Requirements

	Installation from PyPI

	Database

	Caching

	Serving

	Heroku-style

	Commercial Support

	Upgrading
	From 0.1 to 0.2

	Concepts
	Users

	Variables / Values / Events

	Goals

	Achievements

	Properties

	Rewards

	Further new concepts

	REST API
	Add or update user data

	Delete a user

	Increase Value

	Increase multiple Values at once

	Get Progress

	Get a single achievement Level

	Authentication

	Register Device (for Push-Messages)

	Get Messages

	Set Messages Read

	Modules

	Roadmap
	Todo

	Future Features

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements

The gamification-engine requires an installed python distribution in version 3.x. It uses several language structures which are not supported in Python 2.x. Furthermore, the only currently supported persistence layer is PostgreSQL. Also the corresponding development packages are required (for Ubuntu/Debian: libpq-dev and python3-dev).

Installation from PyPI

The gamification-engine is available as a python package.
You can install it by invoking

$ pip install gamification-engine
$ gengine_quickstart mygengine
$ cd mygengine

In the latest version, there are some optional dependencies for auth pushes and testing. To use these features install it in the following way:

$ pip install gamification-engine[auth,pushes,testing]

Afterwards edit production.ini according to your needs.

Database

The only currently supported persistence layer is PostgreSQL as we make use of its timezone-related features.

To create the tables run:

$ initialize_gengine_db production.ini

Caching

	For caching we make use of two different approaches:

	
	using dogpile.cache [https://dogpilecache.readthedocs.org/] for caching database lookups and computations

	using memcached [http://memcached.org/] as a URL-based cache that can be served directly by nginx [http://nginx.org/]

The second approach is optional but highly recommended, it can be deactivated by setting urlcache_active = false in your ini-file.

Serving

You can use any WSGI-supporting webserver.
(e.g. nginx as a reverse-proxy to uwsgi)

To quickly get started, you can run:

$ pserve production.ini

Heroku-style

There is also an Heroku-like Project (we use dokku) at gamification-engine-dokku [https://github.com/ActiDoo/gamification-engine-dokku]

Commercial Support

Commercial support is available at https://www.gamification-software.com or together with app development at https://www.appnadoo.de

Upgrading

From 0.1 to 0.2

In version 0.2 we have introduced breaking changes that make it impossible to do an automatic upgrade. If you are happy with 0.1, there is no need to upgrade. Furthermore, we have switched to Python 3.x as our main target environment.
For performing a manual upgrade the following steps are required:

	Install a new instance of 0.2

	Recreate all settings / achievements manually using the new goal condition syntax

	Recreate users

	Copy values data

For future updates we will try to keep the goal condition syntax backwards compatible.

Concepts

Assumption: You installed the gamification-engine and you can open the admin interface at /admin/

Users

Gamification is always about users.
As the gamification-engine include location-based, time-based and social features, it needs to know some information about the user:

	lat

	lon

	country

	city

	region

	friends

	groups

Variables / Values / Events

Variables describe events that can happen in your application.

When such an event occurs, your application triggers the gamification engine to increase the value of the variable for the relevant users.

The storage of these values can be grouped by day, month or year to save storage.
Note that if you want to specify time-based rules like “event X occurs Y times in the last 14 days”, you may not group the values by month or year.

In addition to integers, the application can also add additional keys to the variables to model application-specific data.

Goals

Goals define conditions that need to be fulfilled in order to get an achievement.

	goal: the value that is used for comparison

	operator: “geq” or “leq”; used for comparison

	condition: the rule in json format, see below

	
	group_by_dateformat: passed as a parameter to to_char (PostgreSQL-Docs [http://www.postgresql.org/docs/9.3/static/functions-formatting.html])

	e.g. you can select and group by the weekday by using “ID” for ISO 8601 day of the week (1-7) which can afterwards be used in the condition

	group_by_key: group by the key of the values table

	timespan: number of days which are considered (uses utc, i.e. days*24hours)

	maxmin: “max” or “min” - select min or max value after grouping

The conditions contain a python expression that must evaluate to a valid parameter for SQLAlchemy’s where function.

Examples:

When the user has participated in the seminars 5, 7, and 9, he should get an achievement.
We first need to create a variable “participate” and tell our application to increase the value of that variable with the seminar ID as key for the user by 1.
The constraint that a user may not attend multiple times to one seminar is covered by the application and not discussed here.
In the gamification-engine we create a Goal with the following formular:

{
 "term": {
 "type": "literal",
 "variable": "participate",
 "key": ["5","7","9"],
 "key_operator": "IN"
 }
}

Whenever a value for “participate” is set, this Goal is evaluated.
It sums up all rows with the given condition and compares it to the Goal’s “goal” attribute using the given operator.

Another simple example is to count the number of invited users.
After inviting 30 other users to the application, the user should get an achievement.
We create a variable “invite_users” and set the condition as follows:

p.var=="invite_users"
{
 "term": {
 "type": "literal",
 "variable": "invite_users"
 }
}

Furthermore we set the Goal’s goal to 30 and the operator to “geq”.

If you want to make use of Goals with multiple levels, you probably want to increase the goal attribute with every level.
Therefore, you can mathematical formulas.

Example:

For the first level, the user needs to invite 5 other users, for the second level 10 other users and so on.

5*level # level is set by the gamification engine

For further information about the rule language, we currently need to refer to the sources [https://github.com/ActiDoo/gamification-engine/blob/develop/gengine/app/formular.py] .

Achievements

Achievements contain a collection of rewards that are given to users who reach all assigned Goals of the Achievement.
To allow multiple levels, you can set the maxlevel attribute.

You can specify time-based constraints by setting valid_start and valid_end,
and location-based constraints by setting lat,*lng* and max_distance.

The hidden flag can be used to model secret achievements. The priority specifies a custom order in output lists.

Achievements can also be used to model leaderboards.
Therefor you need to assign a single Goal whose goal attribute is set to None.
The Achievement’s relevance attribute specifies in which context the leaderboard should be computed.
Valid values are “friends”, “city” and “own”.

For setting up recurring achievements, set the evaluation to e.g. monthly. The evaluation_timezone parameter specifies when exactly the periods begin and end.

There is a view_permission setting that can be used when authorization is active. It specifies whether other users can see the goal progress.

Properties

A property describes an Achievement or a Goal of our system, like the name, image, description or XP the user should get.
The Values of Properties can again be python formulas.
Inside the formula you can make use of the level by using level.

Additionally, Properties can be used as Variables.
This is useful to model goals like “reach 1000xp”.

Rewards

From the model perspective Rewards are similar to Properties.
The main difference occurs during the evaluation of Achievements, more specifically when a user reaches a new level.
While the formulas for the properties are simply evaluated for the specific level,
the evaluated formulas of the rewards are compared to lower levels.

The engine thus knows for each achieved level, which reward is new and can tell the application about this.
In your application this could for example trigger a badge notification.

Further new concepts

Since the latest version, some complete new optional concepts and features are added to the gamification-engine:

	Authentication

	Push Notifications

	Messages

All of these features are optional and they are not required to successfully use the engine. For the moment we refer to the source code and the description of the Rest API, a detailed documentation will follow.

REST API

Add or update user data

	
	POST to “/add_or_update_user/{userId}”

	
	
	URL parameters:

	
	userId (the Id of a user in your system)

	
	POST parameters:

	
	lat (float latitude)

	lon (float longitude)

	country (String country)

	city (String city)

	region (String city)

	friends (comma separated list of user Ids)

	groups (comma separated list of group Ids)

	language (name)

	additional_public_data (JSON)

	add or updates a user with Id {userId} and Post parameters into the engines database

	if friends Ids are not registered a empty record with only the user Id will be created

Delete a user

	DELETE to “/delete_user/{userId}”

Increase Value

	
	POST to “/increase_value/{variable_name}/{userId}/{key}”

	
	
	URL parameters:

	
	variable_name (the name of the variable to increase or decrease)

	userId (the Id of the user)

	key (an optional key, describing the context of the event, can be used in rules)

	
	POST parameters:

	
	value (the increase/decrease value in Double)

	if the userId is not registered an error will be thrown

	directly evaluates all goals associated with this variable_name

	directly returns new reached achievements

Increase multiple Values at once

	
	POST to “/increase_multi_values”

	
	
	JSON request body:

	
	{

	
	“{userId}”{

	
	“{variable}”[

	
	{

	“key” : “{key}”,
“value” : “{value}”

}

]

}

}

	directly evaluates all goals associated with the given variables

	directly returns new reached achievements

Get Progress

	get complete achievement progress for a single user

	GET to “/progress/{userId}”

	returns the complete achievement progress of a single user

Get a single achievement Level

	GET to “/achievement/{achievement_id}/level/{level}”

	retrieves information about the rewards/properties of an achievement level

Authentication

	POST to “/auth/login”

	Parameters in JSON-Body: email, password

	
	Returns a json body with a token:

	
	{

	“token” : “foobar….”

}

Register Device (for Push-Messages)

	POST to “/register_device/{user_id}”

	Parameters in JSON-Body: device_id, push_id, device_os, app_version

	
	Returns a json body with an ok status, or an error:

	
	{

	“status” : “ok”

}

Get Messages

	GET to “/messages/{user_id}”

	Possible GET Parameters: offset

	Limit is always 100

	
	Returns a json body with the messages:

	
	{

	
	“messages”[{

	“id” : “….”,
“text” : “….”,
“is_read” : false,
“created_at” : “….”

}]

}

Set Messages Read

	POST to “/read_messages/{user_id}”

	Parameters in JSON-Body: message_id

	Sets all messages as read which are at least as old, as the given message

	
	Returns a json body with an ok status, or an error:

	
	{

	“status” : “ok”

}

Modules

[image: ../_images/2017-03-28-erm.svg]

Roadmap

Anyone is invited to work on new features, even if they are not listed here.
Features which might influence the overall performance or cause greater changes should be discussed in a feature request before.

At ActiDoo.com we implement new functions as we need them and push them as soon as they are somewhat stable.

Todo

	Review and improve tests

	Improve Caching

Future Features

	possibility to store events (values table) in noSQL systems

	implement callback for time-aware achievements

	nicer admin UI

	statistics

	maybe a possiblity to plugin authentication/authorization to allow users to directly push events to the engine
- this still needs to be discussed from an architectural point of view
- this would also introduce the need for security constraints to detect cheaters

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to gamification-engine’s documentation!

 		
 Installation

 		
 Requirements

 		
 Installation from PyPI

 		
 Database

 		
 Caching

 		
 Serving

 		
 Heroku-style

 		
 Commercial Support

 		
 Upgrading

 		
 From 0.1 to 0.2

 		
 Concepts

 		
 Users

 		
 Variables / Values / Events

 		
 Goals

 		
 Achievements

 		
 Properties

 		
 Rewards

 		
 Further new concepts

 		
 REST API

 		
 Add or update user data

 		
 Delete a user

 		
 Increase Value

 		
 Increase multiple Values at once

 		
 Get Progress

 		
 Get a single achievement Level

 		
 Authentication

 		
 Register Device (for Push-Messages)

 		
 Get Messages

 		
 Set Messages Read

 		
 Modules

 		
 Roadmap

 		
 Todo

 		
 Future Features

